In this work, we demonstrate the offline FPGA realization of both recurrent and feedforward neural network (NN)-based equalizers for nonlinearity compensation in coherent optical transmission systems. First, we present a realization pipeline showing the conversion of the models from Python libraries to the FPGA chip synthesis and implementation. Then, we review the main alternatives for the hardware implementation of nonlinear activation functions. The main results are divided into three parts: a performance comparison, an analysis of how activation functions are implemented, and a report on the complexity of the hardware. The performance in Q-factor is presented for the cases of bidirectional long-short-term memory coupled with convolutional NN (biLSTM + CNN) equalizer, CNN equalizer, and standard 1-StpS digital back-propagation (DBP) for the simulation and experiment propagation of a single channel dual-polarization (SC-DP) 16QAM at 34 GBd along 17x70km of LEAF. The biLSTM+CNN equalizer provides a similar result to DBP and a 1.7 dB Q-factor gain compared with the chromatic dispersion compensation baseline in the experimental dataset. After that, we assess the Q-factor and the impact of hardware utilization when approximating the activation functions of NN using Taylor series, piecewise linear, and look-up table (LUT) approximations. We also show how to mitigate the approximation errors with extra training and provide some insights into possible gradient problems in the LUT approximation. Finally, to evaluate the complexity of hardware implementation to achieve 400G throughput, fixed-point NN-based equalizers with approximated activation functions are developed and implemented in an FPGA.
translated by 谷歌翻译
To circumvent the non-parallelizability of recurrent neural network-based equalizers, we propose knowledge distillation to recast the RNN into a parallelizable feedforward structure. The latter shows 38\% latency decrease, while impacting the Q-factor by only 0.5dB.
translated by 谷歌翻译
在本文中,提出了一种新的方法,该方法允许基于神经网络(NN)均衡器的低复杂性发展,以缓解高速相干光学传输系统中的损伤。在这项工作中,我们提供了已应用于馈电和经常性NN设计的各种深层模型压缩方法的全面描述和比较。此外,我们评估了这些策略对每个NN均衡器的性能的影响。考虑量化,重量聚类,修剪和其他用于模型压缩的尖端策略。在这项工作中,我们提出并评估贝叶斯优化辅助压缩,其中选择了压缩的超参数以同时降低复杂性并提高性能。总之,通过使用模拟和实验数据来评估每种压缩方法的复杂性及其性能之间的权衡,以完成分析。通过利用最佳压缩方法,我们表明可以设计基于NN的均衡器,该均衡器比传统的数字背部传播(DBP)均衡器具有更好的性能,并且只有一个步骤。这是通过减少使用加权聚类和修剪算法后在NN均衡器中使用的乘数数量来完成的。此外,我们证明了基于NN的均衡器也可以实现卓越的性能,同时仍然保持与完整的电子色色散补偿块相同的复杂性。我们通过强调开放问题和现有挑战以及未来的研究方向来结束分析。
translated by 谷歌翻译
FPGA中首次实施了针对非线性补偿的经常性和前馈神经网络均衡器,其复杂度与分散均衡器的复杂度相当。我们证明,基于NN的均衡器可以胜过1个速度的DBP。
translated by 谷歌翻译
Curating datasets for object segmentation is a difficult task. With the advent of large-scale pre-trained generative models, conditional image generation has been given a significant boost in result quality and ease of use. In this paper, we present a novel method that enables the generation of general foreground-background segmentation models from simple textual descriptions, without requiring segmentation labels. We leverage and explore pre-trained latent diffusion models, to automatically generate weak segmentation masks for concepts and objects. The masks are then used to fine-tune the diffusion model on an inpainting task, which enables fine-grained removal of the object, while at the same time providing a synthetic foreground and background dataset. We demonstrate that using this method beats previous methods in both discriminative and generative performance and closes the gap with fully supervised training while requiring no pixel-wise object labels. We show results on the task of segmenting four different objects (humans, dogs, cars, birds).
translated by 谷歌翻译
Generated texts from large pretrained language models have been shown to exhibit a variety of harmful, human-like biases about various demographics. These findings prompted large efforts aiming to understand and measure such effects, with the goal of providing benchmarks that can guide the development of techniques mitigating these stereotypical associations. However, as recent research has pointed out, the current benchmarks lack a robust experimental setup, consequently hindering the inference of meaningful conclusions from their evaluation metrics. In this paper, we extend these arguments and demonstrate that existing techniques and benchmarks aiming to measure stereotypes tend to be inaccurate and consist of a high degree of experimental noise that severely limits the knowledge we can gain from benchmarking language models based on them. Accordingly, we propose a new framework for robustly measuring and quantifying biases exhibited by generative language models. Finally, we use this framework to investigate GPT-3's occupational gender bias and propose prompting techniques for mitigating these biases without the need for fine-tuning.
translated by 谷歌翻译
Machine learning methods like neural networks are extremely successful and popular in a variety of applications, however, they come at substantial computational costs, accompanied by high energy demands. In contrast, hardware capabilities are limited and there is evidence that technology scaling is stuttering, therefore, new approaches to meet the performance demands of increasingly complex model architectures are required. As an unsafe optimization, noisy computations are more energy efficient, and given a fixed power budget also more time efficient. However, any kind of unsafe optimization requires counter measures to ensure functionally correct results. This work considers noisy computations in an abstract form, and gears to understand the implications of such noise on the accuracy of neural-network-based classifiers as an exemplary workload. We propose a methodology called "Walking Noise" that allows to assess the robustness of different layers of deep architectures by means of a so-called "midpoint noise level" metric. We then investigate the implications of additive and multiplicative noise for different classification tasks and model architectures, with and without batch normalization. While noisy training significantly increases robustness for both noise types, we observe a clear trend to increase weights and thus increase the signal-to-noise ratio for additive noise injection. For the multiplicative case, we find that some networks, with suitably simple tasks, automatically learn an internal binary representation, hence becoming extremely robust. Overall this work proposes a method to measure the layer-specific robustness and shares first insights on how networks learn to compensate injected noise, and thus, contributes to understand robustness against noisy computations.
translated by 谷歌翻译
We describe an approach for empirical modeling of steel phase kinetics based on symbolic regression and genetic programming. The algorithm takes processed data gathered from dilatometer measurements and produces a system of differential equations that models the phase kinetics. Our initial results demonstrate that the proposed approach allows to identify compact differential equations that fit the data. The model predicts ferrite, pearlite and bainite formation for a single steel type. Martensite is not yet included in the model. Future work shall incorporate martensite and generalize to multiple steel types with different chemical compositions.
translated by 谷歌翻译
We introduce ensembles of stochastic neural networks to approximate the Bayesian posterior, combining stochastic methods such as dropout with deep ensembles. The stochastic ensembles are formulated as families of distributions and trained to approximate the Bayesian posterior with variational inference. We implement stochastic ensembles based on Monte Carlo dropout, DropConnect and a novel non-parametric version of dropout and evaluate them on a toy problem and CIFAR image classification. For CIFAR, the stochastic ensembles are quantitatively compared to published Hamiltonian Monte Carlo results for a ResNet-20 architecture. We also test the quality of the posteriors directly against Hamiltonian Monte Carlo simulations in a simplified toy model. Our results show that in a number of settings, stochastic ensembles provide more accurate posterior estimates than regular deep ensembles.
translated by 谷歌翻译
Compressing neural network architectures is important to allow the deployment of models to embedded or mobile devices, and pruning and quantization are the major approaches to compress neural networks nowadays. Both methods benefit when compression parameters are selected specifically for each layer. Finding good combinations of compression parameters, so-called compression policies, is hard as the problem spans an exponentially large search space. Effective compression policies consider the influence of the specific hardware architecture on the used compression methods. We propose an algorithmic framework called Galen to search such policies using reinforcement learning utilizing pruning and quantization, thus providing automatic compression for neural networks. Contrary to other approaches we use inference latency measured on the target hardware device as an optimization goal. With that, the framework supports the compression of models specific to a given hardware target. We validate our approach using three different reinforcement learning agents for pruning, quantization and joint pruning and quantization. Besides proving the functionality of our approach we were able to compress a ResNet18 for CIFAR-10, on an embedded ARM processor, to 20% of the original inference latency without significant loss of accuracy. Moreover, we can demonstrate that a joint search and compression using pruning and quantization is superior to an individual search for policies using a single compression method.
translated by 谷歌翻译